synchronous acceleration - определение. Что такое synchronous acceleration
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое synchronous acceleration - определение

DIGITAL CIRCUIT SYNCHRONIZED BY CLOCK SIGNAL
Synchronous logic; Synchronous system; Synchronous design

Hardware acceleration         
USE OF SPECIALIZED COMPUTER HARDWARE TO PERFORM SOME FUNCTIONS MORE EFFICIENTLY THAN IS POSSIBLE IN SOFTWARE RUNNING ON A MORE GENERAL-PURPOSE CPU
Hardware accelerator; Accelerator board; Hardware mixing; Acceleration hardware; Hardware-accelerated; Hardware Acceleration; Hardware accelerators; Hardware accelerated; Hardware acceleration (computing)
Hardware acceleration is the use of computer hardware designed to perform specific functions more efficiently when compared to software running on a general-purpose central processing unit (CPU). Any transformation of data that can be calculated in software running on a generic CPU can also be calculated in custom-made hardware, or in some mix of both.
synchronous motor         
  • The rotating magnetic field is formed from the sum of the magnetic field vectors of the three phases of the stator windings.
  • DC-excited motor, 1917. The exciter is clearly seen at the rear of the machine.
  • Rotor of a large water pump. The slip rings can be seen below the rotor drum.
  • Stator winding of a large water pump
  • Small synchronous motor with integral stepdown gear from a microwave oven
  • Teletype]] machine, non-excited rotor type, manufactured from 1930 to 1955
  • V-curve of a synchronous machine
MOTOR WITH ROTATION SYNCHRONIZED TO THE SUPPLY CURRENT FREQUENCY
Synchronous machine; Permanent magnet synchronous motor; PMSM; Permanent-magnet synchronous motor; Permanent-magnet motor; Senkron motor; Permanent magnet synchronous; Synchronous electric motor
¦ noun an electric motor having a speed exactly proportional to the current frequency.
SDRAM         
SDRAM FAMILY OF COMPUTER MEMORY TECHNOLOGIES
SDR SDRAM; PC100; Pc100; PC133; Pc133; SGRAM; PC66; Prefetch buffer; Virtual Channel Memory; Prefetch buffer width; VC-RAM; Vcram; SLDRAM; Sldram; SyncDRAM; Syncdram; Synchronous Graphics Random Access Memory; SDRAM; Synchronous Dynamic Random Access; Synchronous dynamic random access memory; PC100 RAM; Synchronous Dynamic Random Access Memory; SDRAM burst ordering; SDRAM burst mode; Synchronous graphics RAM; Synchronous DRAM; Synchronous graphics random-access memory; Synchronous dynamic RAM
Synchronous Dynamic Random Access Memory (Reference: RAM, DRAM, IC, Intel, Samsung)

Википедия

Synchronous circuit

In digital electronics, a synchronous circuit is a digital circuit in which the changes in the state of memory elements are synchronized by a clock signal. In a sequential digital logic circuit, data are stored in memory devices called flip-flops or latches. The output of a flip-flop is constant until a pulse is applied to its "clock" input, upon which the input of the flip-flop is latched into its output. In a synchronous logic circuit, an electronic oscillator called the clock generates a string (sequence) of pulses, the "clock signal". This clock signal is applied to every storage element, so in an ideal synchronous circuit, every change in the logical levels of its storage components is simultaneous. Ideally, the input to each storage element has reached its final value before the next clock occurs, so the behaviour of the whole circuit can be predicted exactly. Practically, some delay is required for each logical operation, resulting in a maximum speed limitations at which each synchronous system can run.

To make these circuits work correctly, a great deal of care is needed in the design of the clock distribution networks. Static timing analysis is often used to determine the maximum safe operating speed.

Nearly all digital circuits, and in particular nearly all CPUs, are fully synchronous circuits with a global clock. Exceptions are often compared to fully synchronous circuits. Exceptions include self-synchronous circuits,globally asynchronous locally synchronous circuits, and fully asynchronous circuits.